

report on PLANT DISEASE

RPD No. 1010 July 1997

DEPARTMENT OF CROP SCIENCES UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

VERTICILLIUM WILT DISEASE

Verticillium wilt is a serious disease that affects over 300 host plants in numerous plant families (Tables 1 and 2). The host range includes trees, shrubs, ground covers and vines, vegetables, field crops, fruits, herbaceous ornamentals, and many weeds.

The disease is caused by the common soil-borne fungi *Verticillium albo-atrum* and *Verticillium dahliae*. Researchers now believe that *V. albo-atrum* is found mainly in Canada and Europe while V. dahliae is the species prevalent in the Midwest. Most soils in Illinois and other crop-growing areas throughout the world contain numerous strains or pathotypes of Verticillium that show definite host plant preferences.

Figure 1. Norway maple showing Verticillium wilt damage.

Once the Verticillium fungus is introduced into a field

or garden, it can survive for several years in the soil. Propagules of *Verticillium* are brought into new areas by flowing water (for example, irrigation furrows); by strong winds; on seed, tools, or farm machinery; and in the soil and roots of transplants or nursery stock.

Symptoms of Verticillium wilt are easily confused with two other widespread diseases, Fusarium wilt or yellows and bacterial wilt. However, Verticillium wilt is found mostly in temperate zones and is prevalent in the northern states having relatively low soil temperatures (optimum 70°F or 21°C). The disease is most severe in Illinois during cool to warm weather, but not as prevalent in hot weather.

It is not unusual for every plant in a badly infested field to be infected, especially where susceptible crops have been grown for many years. If weather conditions are unfavorable for Verticillium development, only a slight reduction in yield or quality may occur.

The fungus produces toxins that cause tyloses or gums to form in the vascular (water-conducting) tissues, resulting in a greatly decreased flow of water from the roots to the foliage. This lack of water results in wilting, the characteristic symptom of the disease, and often death of the host.

Symptoms

Vascular discoloration or streaking, consisting of dark-colored, elongated, necrotic tissue, occurs in both woody and herbaceous stems. This streaking may be accompanied by external symptoms, such as wilting,

For further information concerning tree diseases, contact Nancy R. Pataky, Director of the Plant Clinic and Extension Specialist in the Department of Crop Sciences, University of Illinois at Urbana-Champaign.

the yellowing and death of leaves, and the death of branches or entire plants. Chronic symptoms may follow, including stunted, chlorotic, and deformed foliage; leaf scorch; slow growth; abnormally heavy seed crops; and the dieback of shoots and branches.

WOODY HOSTS. The external symptoms of Verticillium wilt vary and are often difficult to recognize. Usually the foliage on one or more twigs of a branch suddenly wilts. An overall yellowing of the foliage sometimes precedes wilting. When the first wilting stage is not detected, wilt symptoms may appear on an entire branch or in the whole crown (Figure 1). Most trees and shrubs show leaf symptoms in early July. However, in the Midwest some trees may show symptoms as early as March and as late as November. Some tree species, such as ash, may defoliate while still green before noticeable yellowing or wilting has occurred.

Decline in twig growth and the dieback of individual twigs and branches are other external symptoms of Verticillium wilt. In certain trees, such as maple and tuliptree, elongated dead areas of bark may occur on diseased branches or trunks where the inner bark is killed. Water-soaked areas may develop under the Figure 2. Typical discoloration on diseased sapwood from dead bark.

infected maples (IL Nat Hist Survey).

Trees or shrubs that develop a limited amount of branch wilt during a growing season may show additional wilt and dieback the following year. Still others may recover and not wilt in succeeding years or may wilt again after several years. Little information is available about year-to-year behavior of the pathogen in woody hosts. Recurrence is unpredictable.

Figure 3. Verticillium wilt of eggplant. Note the wilted and curled leaves (arrow).

The characteristic internal symptom of Verticillium wilt on woody hosts is the discoloration of the sapwood that occurs in the twigs, branches, and trunk during advanced stages of foliage wilt. When infected wood is cut at a slant, the discoloration in most woody species is brown (Figure 2). In infected maple, magnolia, and sumac plants, the streaks are light to dark green. In all ash species, internal discoloration is rare and seldom observed in diseased plants.

HERBACEOUS HOSTS

Nearly all nonwoody plants are similarly affected. The lower and older leaves often turn yellow and later wilt and wither. The symptoms gradually progress to the upper parts of the plant (Figure 3). Diseased plants are often stunted and, if infected early, generally die prematurely. Midday wilting, followed by evening recovery, is common for a time.

For example, outward symptoms on tomato may not develop until the plants are bearing heavily or are under drought stress. Yellow blotches then can develop on older leaves and the veins within the yellowed areas show a brown discoloration. Light, chocolate brown dead areas later develop in these blotches. Yellowing and wilting of the lower leaves occur first. Later, the upper leaves become pale green and the margins of the leaves tend to curl upward.

Symptoms of Verticillium wilt on herbaceous hosts, such as tomato, can easily be confused with Fusarium wilt, bacterial wilt, or bacterial canker (Figure 4). Laboratory culturing and identification of the causal organism are necessary to distinguish these diseases. Verticillium wilt of strawberries can also be mistaken for drought, red stele disease, black root rot, or winter injury. Again, a culture is necessary for positive identification.

Root-knot nematodes and lesion nematodes in combination with Verticillium wilt on eggplant, pepper, potato, and tomato have been reported to have a synergistic effect. When the Verticillium fungus is not widespread in an herbaceous bed, only an occasional plant or scattered plants may wilt and die, but when the disease is serious, large numbers of Figure 4. Symptoms of tomato wilts: (a) bacterial canker; plants can wilt, wither, and die quickly.

(b) Verticillium wilt; (c)Fusarium wilt (IL Exper Station).

A cross-section of the stem of an infected herbaceous plant at or near the soil line shows a brown discoloration in the vascular tissue. The discoloration is most noticeable in the nodes where the branches begin.

Disease Cycle

Both Verticillium albo-atrum and V. dahliae (Figure 5) produce one-celled, colorless conidia that are short-lived. Verticillium dahliae also produces minute, black, resting structures--called microsclerotia--(Figure 5e), while V. albo-atrum produces microsclerotial-like dark, thick-walled mycelium but not microsclerotia. Optimum growth of V. albo-atrum occurs at 68° to 77°F (20° to 25°C), while V. dahliae prefers slightly higher temperatures (77° to 81°F or 25° to 28°C) and is somewhat more common in warmer regions. Different strains within each species differ considerably in virulence and other characteristics. Although some Verticillium strains show host specialization, most of them attack a wide range of host plants. Agricultural soils may contain up to 100 or more microsclerotia per gram. Six to 50 microsclerotia per gram are sufficient to generate 100 percent infection in such susceptible crops as eggplant, pepper, potato, and tomato.

The two Verticillium wilt fungi (Figure 5) invade the root systems of host plants through wounds or by direct penetration. Once within a root, the fungi invade the water-conducting tissue (xylem) of the host and then spread upward through the plant. The disease is spread by fungal spores (conidia) being transported upward in the sapstream where they may become lodged, germinate, and affect new plant parts. Wilt symptoms typically are not observed until the fungus has colonized the roots, stems, or trunks of trees and shrubs. Wounds on the trunk, branches, and twigs of trees may also serve as sites for infection by insect transmission of the fungus.

After the host dies or the growing season ends, both *Verticillium* fungi survive as mycelia overwintering

in dead plant parts that have fallen to the ground; the fungi may also live saprophytically in the soil whether or not a host is available. Survival can occur in roots of nonhost species in which systemic infection does not occur. Verticillium is known to naturally colonize soils where susceptible hosts have never been grown.

The microsclerotia are capable of long-term survival (up to 15 years) without contact with a host plant. They by wind or water where they serve as new

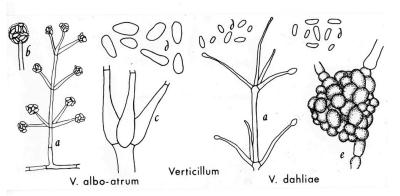


Figure 5. Verticillium wilt fungi under microscope: (a) verticillate conidiophores; (b) conidial head; (c) close-up of conidiophore branching; may be introduced into uncolonized areas (d) conidia; (e) mature microsclerotium (drawing by L. Gray).

inoculum. Verticillium may also be spread by contaminated seed, vegetative cuttings, transplants, tubers, scions, buds, nursery plants, rootballs, or the bare roots of infected trees. In addition, mycelia and microsclerotia may be transported by normal tillage operations, hand tools, or farm machinery. Once contact is made with a new host, the fungi again infects the root system, progresses upward, and the cycle is repeated.

Control

The Verticillium wilt fungi are difficult to control. Their ability to survive in the soil for long periods with or without a host plant and the colonization of the water-conducting tissues within a plant limit any scheme to eradicate the pathogens.

The first effort to manage Verticillium starts with proper diagnosis. Only laboratory culturing of infected plant material can positively identify Verticillium as the causal agent. Similar symptoms are produced by other pathogens. When *Verticillium* has been identified, several measures can be taken to reduce the effects of the disease in nurseries, fields, and landscape plantings.

While various fungicides have been tested for application directly to plants, none have been found practical for continued use. An exception is the use of benomyl (Benlate 50 WP) fungicide as a root dip for transplanted seedlings. Benomyl, however, is a temporary measure and will not protect the plant after new roots emerge and colonize the untreated soil.

Chemical control of Verticillium wilt has been shown to be economically practical in strawberry beds, in small vegetable or flower beds, and in soil in greenhouse benches. A common procedure is to treat the soil with a soil fumigant. These chemicals also will control weeds, insects, and nematodes in the soil.

Fumigation is usually done not by the grower but by commercial applicators who are licensed to handle restricted chemicals. Prevention of the disease and the use of resistant varieties or cultivars are perhaps the best methods for controlling Verticillium wilt.

Following are some suggested recommendations:

1. Steam the soil used for potted plants or for bench crops in the greenhouse and nursery at 180°F (82°C) for 30 minutes or 160°F (71°C) for one hour.

- 2. Do not grow susceptible plants on land where crops previously have been killed by Verticillium wilt. For vegetables, flowers, and field crops, rotations of five years or more may help to reduce the amount of infection. Only nonhost crops should be used in the crop rotation cycle (Table 3).
- 2. Control weeds that can act as inoculum reservoirs in and around planting sites. Common weed hosts include ground cherries, lamb's-quarter, pigweed, horse nettles, and velvet leaf.
- 4. Fertilize to promote vigorous growth and maintain a balance of nitrogen, phosphorus, and potassium. Fertilizing can help reduce symptoms in nursery, field, and landscape plantings. Apply a fertilizer containing ammonium sulfate following the suggestions in a soil test report. Affected trees and shrubs should be fertilized and watered as soon as possible after initial wilt symptoms are exhibited. For quick response, the fertilizer should either be injected into the soil in liquid form or be applied to the soil surface and watered in. Ammonium sulfate can be applied at the rate of 29 pounds per 1,000 square feet. Water well immediately after application.
- 5. Water trees and shrubs that show symptoms every 10 to 14 days during dry periods of the growing season, applying 1 to 2 inches (600 to 1,200 gallons per 1,000 square feet) each time.
- 6. Destroy dead plants in nurseries or flower beds, removing as much of the root system as possible.
- 7. Branches or entire trees with recent wilt symptoms should not be removed immediately. They may recover in response to watering and fertilizing (see 4and 5 above). Dead branches on trees should be removed. Cut well below the area of internal discoloration. This wood should not be chipped and used as a mulch as it may spread the fungus to other plantings. Pruning tools should be disinfected by swabbing them with 70 percent rubbing alcohol after working on an infected plant.
- 8. Plant only resistant species, varieties, or cultivars where Verticillium wilt is a problem (Table 3).

Table 1. North American Trees and Shrubs Sus	sceptible to Verticillium Wilt
Almond	Magnolia
Apricot	Saucer
Ash	Southern Star
Black	Maple
Blue	Âmur
European	Bigleaf
Green	Black
White	Hedge
Azalea (Rhododendron molle)	Japanese
Barberry	Norway, 'Crimson King',
European	'Schwedleri'
Japanese	Oregon
Boxelder	Painted
Catalpa	Red
Northern	Silver
Southern	Striped
Western	Sugar
Cherry	Sycamore
Sour or tart	Oak
Sweet	Pin
	Red
Chestnut, Spanish	Olive
Chinaberry Coffee tree Kentucky	
Coffee tree, Kentucky	Osage orange
Cork tree, Amur	Pagoda tree, Japanese Peach
Cotoneaster	
Cotton	Pear
Currant	Persimmon
Deutzia	Plum
Dogwood	Canada
Elder	Garden
Elm	Privet, Amur
American,	Quince
'Augustine Ascending',	Rose, daphne
'Henry Field',	Rose, multiflora
'Littleford',	Russian-olive
'Moline'	Sassafras
Chinese	Smoke tree
English	Sour gum or tupelo
Slippery	Spirea
Goldenrain tree	Sumac
Holly osmanthus	Fragrant
Honeysuckle	Smooth
Horse chestnut	Staghorn
Indian hawthorn	Tulip tree
Judas-tree or redbud	Viburnum
Lilac	Burkwood
Linden	Doublefile
American	Japanese
Little-leaf	Snowball
Locust, black	Wayfaringtree
	Yellowwood

Abutilon Aconite Alfalfa Artichoke Aster, China Bachelor's button or cornflower Balsam, garden Bean, broad Beet Begonia Bergamot, wild Belladonna Blackberry Black-eyed Susan or Rudbeckia Blazing star Butterfly flower Calceolaria Campanula Cantaloupe Cape marigold Carnation Castor bean Chrysanthemum Cineraria, florist's Clarkia Coleus Crown of thorns Cucumber Dahlia Daisy, Shasta Dame's rocket Dandelion Dewberry Eggplant Scarlet Tomato Feverfew, American Fleabane or Erigeron Foxglove Fuchsia Gayfeather Geranium, florist's Ginseng, American Grape Ground cherries Groundsel Heather Hebe Heliotrope, common Hibiscu Hop Horsenettles Horseradish Jerusalem cherry

Lamb's-quarter Lantern plant, Chinese Larkspur, rocket Liatris Lily-of-the valley, wild Lupines Marguerite Melon Honey dew Persian Mignonette Monarda Monkshood Muskmelon Nettle, beaked Nightshade, silver Painted tongue Pea Black-eyed Sweet Peony Pepper Peppermint Petunia Pigweed Poppy mallow Potato Pumpkin Pyrola, pink Radish Raspberry Rhubarb Sage Blue Mealy-cup Salsify Slipperwort Snapdragon Spearmint Spinach Stock Common Evening scented Strawberry Sunflower Thimbleberry Tickseed Tobacco Tomato Udo Velvet leaf Watermelon Zinnia

Table 3. Woody Ornamentals That Are Arborvitae	Katsura-tree	
Aspen	Larch	
Bald cypress	Mountain-ash	
Beech	Mulberry	
Birch	Oak, bur and white	
Boxwood, Korean	Pawpaw	
Crabapple	Pecan	
Fir	Pine	
Ginkgo	Planetree, London	
Hackberry	Poplar	
Hardy rubber tree	Serviceberry	
Hawthorn	Spruce	
Hazelnut	Sweet gum	
Hickory	Sycamore	
Holly	Tree-of-heaven	
Honeylocust	Walnut	
Hornbeam	Willow	
Hophornbean	Yew	
Juniper (red cedar)	Zelkova	

Adapted from E. B. Himelick, Verticillium Wilt of Trees and Shrubs, Illinois Natural History Survey, Leaflet B-1.